10,317 research outputs found

    Study on Intumescent Flame Retarded Polystyrene Composites with Improved Flame Retardancy

    Get PDF
    The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter

    Synergistic Effect of Carbon Nanotubes and Decabromodiphenyl Oxide/Sb\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e in Improving the Flame Retardancy of Polystyrene

    Get PDF
    Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released

    Branching ratios and direct CP asymmetries in D→PPD\to PP decays

    Full text link
    We propose a theoretical framework for analyzing two-body nonleptonic DD meson decays, based on the factorization of short-distance (long-distance) dynamics into Wilson coefficients (hadronic matrix elements of four-fermion operators). The parametrization of hadronic matrix elements in terms of several nonperturbative quantities is demonstrated for the D→PPD\to PP decays, PP denoting a pseudoscalar meson. We consider the evolution of Wilson coefficients with energy release in individual decay modes, and the Glauber strong phase associated with the pion in nonfactorizable annihilation amplitudes, that is attributed to the unique role of the pion as a Nambu-Goldstone boson and a quark-anti-quark bound state simultaneously. The above inputs improve the global fit to the branching ratios involving the η′\eta' meson, and resolves the long-standing puzzle from the D0→π+π−D^0\to\pi^+\pi^- and D0→K+K−D^0\to K^+K^- branching ratios, respectively. Combining short-distance dynamics associated with penguin operators and the hadronic parameters determined from the global fit to branching ratios, we predict direct CP asymmetries, to which the quark loops and the scalar penguin annihilation give dominant contributions. In particular, we predict ΔACP≡ACP(K+K−)−ACP(π+π−)=−1.00×10−3\Delta A_{\rm CP}\equiv A_{\rm CP}(K^+K^-)-A_{\rm CP}(\pi^+\pi^-)=-1.00\times 10^{-3}, lower than the LHCb and CDF data.Comment: 17 pages, 3 figures, matches published versio

    Extracting CP violation and strong phase in D decays by using quantum correlations in psi(3770)-> D0\bar{D}0 -> (V1V2)(V3V4) and psi(3770)->D0\bar{D}0 -> (V1V2)(K pi)

    Full text link
    The charm quark offers interesting opportunities to cross-check the mechanism of CP violation precisely tested in the strange and beauty sectors. In this paper, we exploit the angular and quantum correlations in the D\bar{D} pairs produced through the decay of the psi(3770) resonance in a charm factory to investigate CP-violation in two different ways. We build CP-violating observables in psi(3770) -> D\bar{D} -> (V_1V_2)(V_3 V_4) to isolate specific New Physics effects in the charm sector. We also consider the case of psi(3770) -> D\bar{D} -> (V_1V_2)(K\pi) decays, which provide a new way to measure the strong phase difference delta between Cabibbo-favored and doubly-Cabibbo suppressed D decays required in the determination of the CKM angle gamma. Neglecting the systematics, we give a first rough estimate of the sensitivities of these measurements at BES-III with an integrated luminosity of 20 fb^-1 at psi(3770) peak and at a future Super tau-charm factory with a luminosity of 10^35 cm^-2.s^-1.Comment: 13 pages

    Bounds on convection driven by internal heating

    Full text link
    Bounds are derived for the space–time averaged temperature 〈T〉〈T〉 of a fluid layer in the Boussinesq approximation between fixed-temperature horizontal boundaries subject to uniform heating HH throughout the volume. The analysis is carried out for both finite and infinite Prandtl number fluids. While the average temperature 〈T〉 ∼ H〈T〉∼H in the purely conductive state, convection enhances the heat transport beyond static conduction reducing the temperature. Lower bounds to the average temperature of the layer scale with the magnitude of the imposed heat flux, with one scaling exponent for the arbitrary Prandtl number case and another for the infinite Prandtl number model. Specifically, it is proven here that at large heating rates where convection is important, 〈T〉 ≥ c1H2/3〈T〉⩾c1H2/3 for finite Prandtl number fluids and 〈T〉 ≥ c2H5/7〈T〉⩾c2H5/7 for infinite Prandtl number fluids. Explicit prefactors c1c1 and c2c2 for the scaling bounds are computed as well. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70833/2/JMAPAQ-45-7-2967-1.pd

    Grenada’s Culture and Traditional Dress

    Get PDF
    Grenada is a Caribbean island that is located in the continent of South America.  Grenada, also known as the ‘Spice Isle’ has a population of 105,897. It is divided into seven parishes – St. George’s being the capital. The country's main cultural traditions were handed down by African ancestors, however other ethnic groups such as Indians and Europeans also made contributions. Due to the large presence of Africans, their traditions were the most influential and present-day traditional dress and cultural practices reflect their elements. Key Words: Grenada Culture, Carnival, Grenada’s Traditional Wea
    • …
    corecore